

High Energy Muon Collider and Neutrino Factory:

A Staged Pathway to Discovery

Vladimir Shiltsev

Accelerator Physics Center, FNAL 30 October 2008

with input from:

K.Long, S.Geer, M.Zisman, A.Tollestrup, A.Bross, K.Yonehara, A.Skrinsky, Y.Mori, A.Jansson, H.Kirk, R.Palmer, Yu.Alexahin, S.Holmes, R.Johnson, D.Kaplan, D.Neuffer, Y.Derbenev, R.Fernow. R.Pasquinelli, M.Popovic, M.Lamm, V.Dudnikov, J.Sabbi, C.Ankenbrandt, N.Mokhov, J.Norem, D.Summers, T.Roberts, M.Chung, V.Balbekov, D.Cline, C.Hill, M.Demarteau... and many others

Big Picture Since ICFA-2005

- **❖LHC** is built and will run in 2009:
 - ^ confidence in getting new physics insight ~2012-13
- Growing consensus on the next machine (P5)
 - A shiuld be lepton-lepton collider

 - very serious attention to alternatives (P5 report)
- **Alternative schemes:**
 - ^ CLIC e+e-linear collider (CDR by ~2010)
 - ♠ plasma-wake e+e- linear colliders (emerging)
 - muon collider (aims for DFSR by 2013) advantages

Small Footprint

Negligible synchrotron radiation

Acceleration in rings rather than linear Less RF, very high energy reach >4TeV

Collider as a Ring

collisions over ~1000 turns of muon lifetime

larger spot, easier tolerances, 2 detector

ILC
$$e^+e^-$$
 (.5 TeV)

CLIC
$$e^+e^-$$
 (3TeV)

10 km

Superb Energy Resolution

Other Changes Since 2005

Rapid development of plans for multi-MW proton facilities:

▲FNAL: Project-X

△CERN: Linac 4, PS Upgrade, SPL

^RAL: ISIS upgrade to 3-5 MW

▲Europe: ESS

- This is exactly what's needed for a Neutrino Factory or a Muon Collider:
 - ♠ thus, Muon Collider/Neutrino Factory offer a natural continuation of the near-future programs

Technical Progress Since 2005

- Successful completion of multi-MW liquid Hgtarget experiment MERIT
- ❖Start-up of ionization cooling experiment MICE (1st beam)
- Development of Muon Cooling components (absorbers, coils, RF cavities)
- Revealing results of RF studies (~20MV/m in 201MHz cavity, ~35MV/m in 805MHz, 60MV/m HP RF, in B-field, ionizing beam studies coming)
- SC coils for helical cooling designed and built
- NF Int'l Scoping Study report delivered
- Progress in MC design (ring lattice, RLA, cool)

Muon Collider Scheme

Muon Collider Parameters

CM Energy	1.5	4	TeV
Luminosity	1	4	10 ³⁴ cm ⁻² s ⁻¹
Muons/bunch	2	2	10^{12}
Ring circumf.	3	8.1	km
Beta at IP β * = σ_z	10	3	mm
dp/p (rms)	0.1	0.12	%
Ring depth*	13	135	m
PD Rep rate	12	6	Hz
PD Power	≈4	≈2	MW
Transv.emm. ϵ_{T}^{**}	25	25	π mm mrad
Long. emm. ε_{t}	72,000	72,000	π mm mrad

^{*}Based on real designs; depth for v radiation keeps off site dose <1 mrem/yr ** low emittance options are under consideration (discussion below)

MC/NF Target

MERIT experiment

- ♠ Demonstration at CERN of 1 cm dia 20 m/s Hg jet target in 15 T & 3e13 24 GeV protons
- ★ target concept has been validated for 4MW 50Hz

Emittances vs Stage

Ionization Cooling is the Key

There is no "mystery" in the ionization cooling

- single particle physics well understood to simulate
- A experiment(s) are to address technical challenges

 Shiltsev: μ+μ- Collider and ν-Factory

4D-Cooling

Muon Ionization
Cooling Experiment

Final PID: TOF

Cherenkov

Calorimeter

Status:

First beam, μ's : Mar'30, 2008

Funded in: UK,CH,JP,NL,US

Challenges:

201MHz RF in 3T field 0.1% meas. of emittance LH2 safety issues

TOF

Single-µ beam ~200 MeV/c

<u>Some</u> prototyping:

4 T spectrometer I

Scintillating-fiber tracker

MUCOOL Liquidhydrogen absorber

MUCOOL 201 MHz RF cavity with beryllium windows

Shiltsev: $\mu+\mu$ - Collider and ν -Factory

6D- Cooling: Baseline

- **❖** Guggenheim lattice as for slide 1
 - A lattice arranged as helix
 - bending gives dispersion
 - \wedge higher-p = longer path in wedge absorbers \rightarrow giving long. cooling

A Q: RF breakdown in 3-10 T field

"Final-" Transverse Cooling

High Field Solenoids:

- low momenta and strong focusing allow low transverse emmittance
- ▲ longitudinal emittance rises

❖ 40/50 T solenoids:

- ✓ 45T hybrid at NHMFL, but 30MW
- √ 30T all HTS under construction
- ✓ Conductor → Magnet R&D: HTS Collab.

Alternatives Under Study

- 6D Cooling:

 - Tilted Coils channel (FOFO Snake)
 both allow to cool both signs μ+ μ-
- Final Transverse Cooling:
 - \wedge Resonant Lattice (low- β PIC)
 - \wedge Liquid Li Lenses (0.5Hz \rightarrow 5-10Hz)

Acceleration and Collider

Acceleration

^ rapid acceleration in linacs and RLAs, <90MW wall plug for 3TeV</p>

▲ lower cost – pulsed synchrotrons prototyping needed

▲FFAGs can also play a role

Collider Ring

- ▲ 1.5 TeV designed
- ★to be studied:
 Detector backround
 with early dipole
 scheme

Neutrino Factory

❖ NF International Scoping Study (ISS-NF, 2005-2008) is finished, reports published (arXive → IINST):

- Physics
- **△** Accelerator
- ▲ Detector

Neutrino Factory Parameters

NF ISS Report

of µ decays/yr/baseline

Number of rings(baselines)

Stored µ energy

 5×10^{20}

2 (3000 & 7000 km)

25 GeV

Mean proton beam power

Pulse repetition rate

Proton kinetic energy

Bunch duration at target

4 MW

50 Hz

5-10-15 GeV

1-3 ns rms

Number of bunches per pulse

Sequential extraction delay

Pulse duration

1-3

 $\geq 17~\mu s$

 $\leq 40 \ \mu s$

ISS: NF≡ PRECISION

Similarly, NF gives the best Physics Reach for studies of mass hierarchy and in the $\sin^2(2\Theta_{13})$ measurements:

SPL: 4MW, 1MT H₂OC, 130 km BL T2HK: 4 MW, 1MT H₂OC, 295 km BL WBB: 2MW, 1MT H₂OC, 1300 km BL

ev: μ+μ- Collider an NF:

NF: 4MW, 100KT MIND, 4000 & 7500 BL BB350: γ =350, 1MT H₂OC, 730 km BL

Global Strategy

2012-13 Decision Point

- igwedge LHC results establish E_{cm} and L of next lepton collider
- Muon Collider development plan
 - A a study to demonstrate feasibility by 2013 (DFSR)
 - \wedge μ -beam demonstration experiments (next 7-10 yr)
 - start of MC construction in early to mid-2020's

❖ Neutrino Factory plan:

- ^ complete MICE experiment by ~2011
- carry out International Design Study (IDS-NF) to deliver NF-RDR in 2012
- ↑ preconstruction R&D → construction start in late 2010's

Activities and Resources

US activities with overlapping memberships

- Neutrino Factory & Muon Collider Collab. (NFMCC)
- Experiments MICE, MERIT, EMMA (all int'l)
- ♠ SBIR funded companies Muons Inc, Tech-X, PBL
- Guideded by "Coordinating Group"
- Reviewed by Technical Advisory Committee
- **❖**Most of the US funding from DoE OHEP:
 - \wedge ~(7-8) M\$/yr (~30 FTEs) at present
- About the same level in Europe:
 - mostly from UK NF and EUROnu

US Muon Accelerator R&D Program 5 yr plan (2009-2013)

The 5 Year Plan

Will address key R&D issues, including

- ↑ Study RF gradients in magnetic field (magnetic insulation)
- ♠ 6D cooling section prototype
- ♠ Full start-to-end simulations
- Bunching ring design
- magnet designs for acceleration, collider and HTS

Deliverables:

- MC Design Feasibility Study Report and NF RDR
- *Results of hardware R&D to make technology choice
- Cost estimate

❖Funding increase needed to ~20M\$/yr (about 3x present level)

IDS-NF: EUROnu and US Plan

- **EUROnu** is the European contribution to the IDS-NF
 - A Has started (EU contract began Sep 1, 2008)
 - △ 1st plenary Mar 23, 2009 at CERN (all welcome!)

IDS-NF: RDR by 2012
demonstrate feasibility

The Americas
Canada
USA
Part of the US
5 yr plan
Japan

(in the future: China ...)

India

Europe

EUROnu

R&D Facilities

- ❖ For the next ~5 years two main facilities to carry out Muon Accelerator R&D will be:
 - **▲ MICE at RAL**
 - Mucool Test Area at Fermilab

MuCool Test Area

R&D Facilities: after 2012

- 6D cooling and other full scale tests will require a high intensity beam of muons = a new R&D facility:
 - A could be synergetic to a muon experiment, e.g., μ2e
 - or be part of a new high-intensity
 Proton Driver facility

Muon Complex Evolution

Summary

- A broad and significant R&D programs are already underway in the US, Europe and Japan
- Focus of the programs over the next 5 years:
 - establish feasibility of a Muon Collider by 2012-13
 - A deliver MC DFSR by 2013 and NF-RDR by 2012
 - A greatly narrow technology options, end-end simul's
 - give cost estimates for MC and NF
- \Leftrightarrow Staged approach: PD o MCTF o NF o MC
- ❖To be realistic option in 2012-13, increased support for μ-Collider R&D is needed now

Stars Aligned for Muon Collider

great progress – experiments and conceptual

promise of affordable cost and small footprint

realistic R&D program toward design reports for μ -collider and ν -factory

understanding of outstanding HEP potential

strong international team

What's Missing?